index - Méthodes et outils de la chimie quantique

Derniers dépôts, tout type de documents

Galvinoxyl, as one of the most extensively studied organic stable free radicals, exhibits a notable phase transition from a high-temperature (HT) phase with a ferromagnetic (FM) intermolecular interaction to a low-temperature (LT) phase with an antiferromagnetic (AFM) coupling at 85 K. Despite significant research efforts, the crystal structure of the AFM LT phase has remained elusive. This study successfully elucidates the crystal structure of the LT phase, which belongs to the P[1 with combining macron] space group. The crystal structure of the LT phase is found to consist of a distorted dimer, wherein the distortion arises from the formation of short intermolecular distances between anti-node carbons in the singly-occupied molecular orbital (SOMO). Starting from the structure of the LT phase, wave function calculations show that the AFM coupling 2J/kB varies significantly from −1069 K to −54 K due to a parallel shift of the molecular planes within the dimer.

Continuer la lecture Partager

We performed several types of ab initio calculations, from Hartree-Fock to Complete-Active-Space second-order perturbation theory and Coupled Cluster, on compact clusters of stoichiometry XY, where X and Y are atoms belonging to the second row of the periodic table. More precisely, we considered the “cubic” structures of three isoelectronic groups, having a total of 48, 52, and 56-electrons, respectively. Notice that the highly symmetric cubic clusters of type X are characterized by an symmetry group, while the XY structures, with XY, have at most a symmetry. Binding energies and wave function analysis of these clusters have been performed, in order to investigate the nature, and the electron delocalization of these systems and establish a comparison between them. To this purpose, we also computed the Total-Position Spread tensor for each structure, a quantity which is related to the multi-reference nature of a system wave function.

Continuer la lecture Partager

Methyl-p-benzoquinone (MpBQ, CH3C6H3(═O)2) is a prototypical molecule in the study of quinones, which are compounds of relevance in biology and several redox reactions. Understanding the electron attachment properties of MpBQ and its ability to form anions is crucial in elucidating its role in these reactions. In this study, we investigate electron attachment to MpBQ employing a crossed electron-molecular beam experiment in the electron energy range of approximately 0 to 12 eV, as well as theoretical approaches using quantum chemical and electron scattering calculations. Six anionic species were identified: C7H6O2–, C7H5O2–, C6H5O–, C4HO–, C2H2–, and O–. The parent anion is formed most efficiently, with large cross sections, through two resonances at electron energies between 1 and 2 eV. Potential reaction pathways for all negative ions observed are explored, and the experimental appearance energies are compared with calculated thermochemical thresholds. Although exhibiting similar electron attachment properties to pBQ, MpBQ’s additional methyl group introduces entirely new dissociative reactions, while quenching others, underscoring its distinctive chemical behavior.

Continuer la lecture Partager

To expand the QUEST database of highly accurate vertical transition energies, we consider a series of large organic chromogens ubiquitous in dye chemistry, such as anthraquinone, azobenzene, BODIPY, and naphthalimide. We compute, at the CC3 level of theory, the singlet and triplet vertical transition energies associated with the low-lying excited states. This leads to a collection of more than 120 new highly accurate excitation energies. For several singlet transitions, we have been able to determine CCSDT transition energies with a compact basis set, finding minimal deviations from the CC3 values for most states. Subsequently, we employ these reference values to benchmark a series of lower-order wave function approaches, including the popular ADC(2) and CC2 schemes, as well as time-dependent density-functional theory (TD-DFT), both with and without applying the Tamm–Dancoff approximation (TDA). At the TD-DFT level, we evaluate a large panel of global, range-separated, local, and double hybrid functionals. Additionally, we assess the performance of the Bethe–Salpeter equation (BSE) formalism relying on both G0W0 and evGW quasiparticle energies evaluated from various starting points. It turns out that CC2 and ADC(2.5) are the most accurate models among those with respective O(N5) and O(N6) scalings with system size. In contrast, CCSD does not outperform CC2. The best performing exchange–correlation functionals include BMK, M06–2X, M06-SX, CAM-B3LYP, ωB97X-D, and LH20t, with average deviations of approximately 0.20 eV or slightly below. Errors on vertical excitation energies can be further reduced by considering double hybrids. Both SOS-ωB88PP86 and SOS-ωPBEPP86 exhibit particularly attractive performances with overall quality on par with CC2, whereas PBE0-DH and PBE-QIDH are only slightly less efficient. BSE/evGW calculations based on Kohn–Sham starting points have been found to be particularly effective for singlet transitions, but much less for their triplet counterparts.

Continuer la lecture Partager

Sujets

Quantum Chemistry Argile Polarizabilities Atrazine Auto-énergie Relativistic quantum chemistry Aimantation Ion Rydberg states Diffusion Monte Carlo Configuration Interaction Range separation Approximation GW AB-INITIO Numerical calculations Mécanique quantique relativiste Perturbation theory Ab initio calculation Atoms Biodegradation Atomic processes Atomic and molecular collisions Parallel speedup QSAR Relativistic corrections Anderson mechanism Atomic charges Carbon Nanotubes Path integral Xenon Chimie quantique A priori Localization Dirac equation Pesticide A posteriori Localization New physics Configuration interactions Dispersion coefficients Quantum Monte Carlo 3115ag Atrazine-cations complexes Dipole Electron electric dipole moment Valence bond Fonction de Green Time reversal violation 3115ae Relativistic quantum mechanics Chemical concepts Time-dependent density-functional theory X-ray spectroscopy Molecular descriptors 3115vj Green's function 3315Fm Coupled cluster calculations 3115vn Argon Pesticides Metabolites Clustering Molecular modeling Environmental fate Partial least squares Atomic data Spin-orbit interactions Ground states Acrolein 3115bw 3115am Azide Anion Analytic gradient Quantum chemistry États excités Single-core optimization AROMATIC-MOLECULES CIPSI CP violation Line formation Electron correlation ALGORITHM Théorie des perturbations Hyperfine structure Coupled cluster Atom 3115aj BENZENE MOLECULE BIOMOLECULAR HOMOCHIRALITY Corrélation électronique 3470+e Atomic and molecular structure and dynamics Abiotic degradation AB-INITIO CALCULATION Petascale Wave functions Electron electric moment Parity violation Molecular properties Atomic charges chemical concepts maximum probability domain population Excited states Large systems Density functional theory Adiabatic connection Anharmonic oscillator Diatomic molecules

Statistiques

Nombre de fichiers déposés

251

Nombre de notices déposées

273